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ABSTRACT 

This paper describes the process and tools used for creating a full 
resolution seamless Landsat mosaic of the continental U.S. at 30 
meters per pixel.  The 6-band, 150GB image was built from 428 
individual Landsat scenes of the Multi-Resolution Land 
Characteristics (MRLC) dataset. Custom designed software based 
on SGI ImageVision framework was developed on JPL 
supercomputers to accomplish this task as a single step operation, 
with minimal operator input. Novel techniques were used to deal 
with data storage and access issues. Various color matching 
algorithms can be used to generate a parameter set, which in turn 
controls all the details of building the mosaic. Some of the tested 
algorithms and their results will also be discussed. 
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1. INTRODUCTION 
With the advent of Landsat [1] imagery, it became relatively easy 
to obtain high quality imagery for large portions of the globe. 
Individual Landsat scenes and mosaics of a few scenes are 
routinely used in various applications [4]. Attempting to assemble 
more than a few scenes, especially across a number of Landsat 
orbital paths is a complex task. Six Federal environmental 
monitoring programs, EMAP (US EPA), GAP (USGS), NAWQA 
(USGS), C-CAP (NOAA), NALC (US EPA/USGS), and the RSA 
Center (USFS) have formed a partnership with the EROS Data 
Center (USGS) in 1995 to facilitate the development of 
comprehensive land characteristics information for the United 
States. This partnership established the Multi-Resolution Land 
Characteristics Interagency Consortium (MRLC) [2] to 
collectively purchase a set of Landsat scenes to serve as a basis for 
nation-wide land coverage studies. 530 scenes collected in 1992 
and 1993 were selected for minimal cloud coverage, converted to 
UTM [3] projection, geo-referenced and correlated with the 

USGS Level 1 Digital Elevation Model. 

Since JPL and Caltech supercomputing assets are frequently used 
for large scale visualizations, we became very interested in this 
dataset. The potential of applying supercomputing to build a full 
resolution Landsat image mosaic of the continental U.S. from this 
dataset was recognized. 

2. REQUIREMENTS 
Finding the right brightness corrections to be applied to each 
scene so that they can be blended into a mosaic can be done using 
a multitude of algorithms. The ability to experiment with various 
approaches was considered essential. To accommodate this, a 
deliberate decision was made to separate the brightness correction 
algorithm from the mosaicking code. A set of parameters that 
encapsulate all the information needed to build a mosaic can be 
generated by an external process and then used to build a mosaic. 
Since manipulating such large quantities of data takes 
considerable time, even on a high performance supercomputer, a 
very important requirement is the ability to stop and restart the 
generation of the mosaic at any point. Also, it is essential to be 
able to regenerate a small portion of the mosaic without affecting 
the rest of the image. On our supercomputer, most of the available 
computing time is available via a job queuing system, so the 
ability to run in non-interactive, unsupervised mode was essential. 
Severe restrictions were also imposed by the very large dataset. A 
single step process, from raw input files to the final mosaic 
eliminates the storage of intermediate data and guarantees the 
propagation of any change in input data and parameters to the 
output. 

3. APPROACH 
Since JPL’s main supercomputer is a SGI Origin 2000, the 
development environment is very well suited for image processing 
tasks. In particular, SGI’s ImageVision Library (IL) [5] provides a 
rich framework, with features such as parallel processing, 
integrated memory management, flexible input/output storage 
options and a large pre-built set of image processing operators. 
Using the IL requires building an image processing chain from 
available and custom modules, and then asking for areas of the 
output image. The processing engine follows the dependency 
chain and assigns processing units to modules in the proper order 
to generate the requested output. Being a C++ object library, it is 
also easily extendable with custom operators. The main 
disadvantage is that the IL has not been ported to any 
environment other than SGI IRIX. 

 



  

3.1 Mosaicking Process Description 
The output image is generated in smaller areas (tiles). This allows 
for start/stop/restart at any tile boundary without affecting the rest 
of the mosaic. For each tile, a subset of the input dataset that 
could contribute to the output tile is selected. This reduces 
drastically the size of the input dataset that needs to be used for 
each tile, and also introduces an important mechanism for 
controlling the processing efficiency. A larger output tile size uses 
more input images but utilizes the cache better, while a smaller 
tile incurs a much larger I/O overhead. Within each tile, smaller 
regions (pages) are used as the unit of data, each one being 
computed in a potentially parallel environment. 

The input images are first remapped to the output projection using 
a choice of bilinear or cubic interpolation. This is done via an IL 
custom warp operator that implements the UTM to Platte Carre 
(latitude and longitude) conversion.  The last step is to blend all 
the transformed and color corrected input images into the output 
tile via a custom weighted sum blend operator. This operator 
applies the brightness correction to the input images 
independently for every band, then computes a weighted sum 
between all the input images, using the pixel values from a blend 
mask image (described later) as the weights.  For example, let j be 
the input image (j from 1 to N), and i the band (i from 1 to 6). For 
each pixel value Ki in the band i of the output mosaic, let Pij be 
the value of the corresponding pixel value from image j band i. 
Let Gij and Oij be the multiplicative and additive corrections for 
image j band i, and Qj be the value of the blend mask for image j. 
Using this notation, the value of the output pixel can be computed 
using the following formula. 
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The output image built using this algorithm is then written to the 
output file.  
The values for Qj for each input image are obtained from a 
corresponding blend mask image. This mask, which follows the 
image through the projection transformation, is used to produce a 
smooth blended edge where scenes overlap and also to eliminate 
undesirable portions of the input image. The use of a blend mask 
solves a multitude of problems. A Landsat scene in UTM 
projection does not fill the whole rectangular input image since 
the satellite has an 8 degree inclination. A blend mask value of 0 
in the areas known not to be covered will effectively eliminate 
those input pixels from the output. The overlap between Landsat 
scenes is also hard to determine. Due to the geometry of the 
trajectory, the overlap varies between a nominal 7.3% at the 
equator and 80% at 81 degrees latitude. Orbit to orbit variability, 
orthorectification and georeferencing of an image introduce even 
more uncertainty in the precise location of a Landsat scene edge. 

3.2 Brightness Correction 
As described, the brightness matching only allows for a 
multiplicative and an additive factor to control the brightness 
correction for each band within each scene.  This produces 
reasonable output but does not allow for corrections for areas 

smaller than the scene.  A better approach would be to have a 
correction mask for each band within each scene, thus gaining 
precise control over the value of each individual input pixel.  This 
seems like a lot of storage overhead, but in most generic cases 
these masks will be rather uniform, subject to good compression 
ratios and parametric description.  For example, our blend masks 
compress to less than 1% of a scene.  It should be noted that if the 
blend masks and the correction factors are not present, default 
values are used, so that uncorrected mosaics can be generated for 
test purposes. 

With the framework described above a large number of possible 
algorithms for brightness corrections can be tested. A statistical 
approach, using only the distribution of values within every band 
of every input scene is simple to implement and efficient to run, 
since the amount of data to be analyzed is much reduced. One of 
the early approaches was to force all the scenes to have the same 
average brightness. This of course produced a seamless mosaic, 
however it looked very unnatural since it had no large-scale 
variations of color. Forcing a uniform brightness over the 
chlorophyll band (usually mapped to visual green), and then using 
the multiplicative and additive factors determined in this way 
across all the other bands, followed by limiting the variations 
between neighbor scenes produced a much better result. Since 
most of the brightness information is obtained from the green 
component, this approach generated a uniformly bright image, yet 
permitted natural variations of color. One of the main problems 
common to all the statistic-based algorithms was introduced by 
the coastal scenes, which had a natural very low average 
brightness. This was solved by ignoring the low intensity pixels 
within the image, in effect only taking into account reasonably 
reflective land areas. 

Another possible approach used to determine the appropriate 
brightness correction is based on finding the best brightness 
match in the overlapping area.  Each pixel Pi in the overlap region 
corresponds to pixel value Xi in one scene and Yi in the 
neighboring scene.  For different pixels, Xi may be greater than, 
less than or equal to Yi, but taken collectively the brightness of 
corresponding pixels in the overlap region of two Landsat scenes 
tends to have a linear relationship.  One exception is the case of 
clouds, which may appear in one scene and not in the other. 

To determine the appropriate additive and multiplicative 
brightness correction to match a scene with its neighbor, we first 
generate a scatter plot by plotting the pixel values in one scene, Xi, 
versus the pixel values in the neighboring scene, Yi, for all pixels 
Pi in the overlap region.  A least squares approach [6] is then used 
to determine the best line fit through the plotted points. The ideal 
best line fit to match the brightness for the two scenes is y=x. If 
the actual best line fit is determined to be y=mx+b, the 
appropriate additive correction is -b and multiplicative correction 
is 1/m. 

The least squares approach ensures that all residual errors fit 
within a certain tolerance.  Outlying points are eliminated and do 
not contribute to the final solution.  This is an important 
advantage that permits matching of scenes with cloud cover, 
because pixels that correspond to clouds that appear in one scene 
and not in the other tend to become outliers in the least squares 
solution. 



  

3.3 Data Storage Format 
ImageVision Library supports a large selection of image file 
formats, but none of the existing ones provided all the features we 
needed. However, since it is easily extendible, a custom file 
format was designed and implemented.  A previously existing 
format, providing hierarchical, multi-spectral and paged image 
storage was used as the starting point. This format was also 
greatly enhanced to supply additional features.  The pre-existing 
format specified the order of the pages within the file, the offset at 
which each page is stored being uniquely determined by a linear 
combination of resolution level, page corner position within the 
whole image and spectral channel. 

To make this format more flexible, one level of indirection 
between the page file offset and the page location within the 
image was introduced. This was done by the introduction of a 
separate index file, containing a small record for every page. This 
record specifies the storage size of the page and the offset of the 
page within the data file. The order of records in the index file is 
predetermined, the same as the page order in the original image 
file format. This addition makes possible per-page compression 
since the size of a page is now flexible, and also adds efficient 
sparse image storage.  We support both JPEG and LZW image 
compression since both are readily available and are used 
extensively.  In addition to standard versions of these, a few 
custom variations were attempted, but they are still in the early 
development phase. 

Another useful feature of this image file format is the fact that the 
image file is consistent as soon as an empty data file and a zero 
filled index file is created. A record containing a size of zero 
specifies that the whole page is black, and no additional storage 
space is required. A newly created file, with a zero size data file 
and an index file filled with zeros is thus a perfectly valid black 
image. As pages are written or modified, they are added at the end 
of the file, and the record in the index file is populated. Thus, the 
output file can be opened for inspection while it is being created, 
allowing early detection of potential problems and an easy visual 
inspection of the generated images. Using this format, the image 
may be modified by simply appending the new pages of image 
data to the data file and modifying the corresponding records in 
the index file.  If a copy of the previous index file is made and 
preserved, simple access to both versions of the file is possible at 
a minimal storage cost. 

4. CONCLUSION 
A simple but powerful framework for producing seamless large 
area mosaics has been presented. This code was successfully used 
to produce a one arc second, six band Landsat image of the whole 
continental U.S. This image is 215,000 pixels wide by 95,000 
pixels high and takes 150GB of storage space in compressed form. 
Building this image took 10 hours on 32 CPUs of an Origin 2000, 
while using 4 GB of memory. 

The flexibility of the approach makes it a good candidate for other 
data sources and also for even larger mosaics. The image file 
format built and used for this mosaic has several advantages over 
other file formats, and could also be used by other large visual 
data storage applications.  The result of this process is available 
on the web at http://mapus.jpl.nasa.gov/. 
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